
8

Three-Dimensional Proxies for Hand-Drawn Characters

EAKTA JAIN and YASER SHEIKH
Carnegie Mellon University
and
MOSHE MAHLER and JESSICA HODGINS
Carnegie Mellon University and Disney Research Pittsburgh

Drawing shapes by hand and manipulating computer-generated objects are
the two dominant forms of animation. Though each medium has its own ad-
vantages, the techniques developed for one medium are not easily leveraged
in the other medium because hand animation is two-dimensional, and infer-
ring the third dimension is mathematically ambiguous. A second challenge is
that the character is a consistent three-dimensional (3D) object in computer
animation while hand animators introduce geometric inconsistencies in the
two-dimensional (2D) shapes to better convey a character’s emotional state
and personality. In this work, we identify 3D proxies to connect hand-drawn
animation and 3D computer animation. We present an integrated approach
to generate three levels of 3D proxies: single-points, polygonal shapes, and a
full joint hierarchy. We demonstrate how this approach enables one medium
to take advantage of techniques developed for the other; for example, 3D
physical simulation is used to create clothes for a hand-animated character,
and a traditionally trained animator is able to influence the performance of
a 3D character while drawing with paper and pencil.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Curve, surface, solid,
and object representations

General Terms: Algorithms

Additional Key Words and Phrases: Hand animation, 3D simulation

ACM Reference Format:

Jain, E., Sheikh, Y., Mahler, M., and Hodgins, J. 2012. Three-dimensional
proxies for hand-drawn characters. ACM Trans. Graph. 31, 1, Article 8
(January 2012), 16 pages.
DOI = 10.1145/2077341.2077349
http://doi.acm.org/10.1145/2077341.2077349

Disney Research for summer funding. Partial funding was also provided by
NSF CCF-0811450 and NSF IIS-0916272.
Authors’ addresses: E. Jain (corresponding author), Y. Sheikh,
Computer Science Department, Carnegie Mellon University; email:
ejain@cs.cmu.edu; M. Mahler, and J. Hodgins, Computer Science Depart-
ment, Carnegie Mellon University and Disney Research Pittsburgh, PA.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2012 ACM 0730-0301/2012/01-ART8 $10.00

DOI 10.1145/2077341.2077349
http://doi.acm.org/10.1145/2077341.2077349

1. INTRODUCTION

Animators adopt many different media to make their characters
move and emote; some favor sketching with a pencil, others like to
manipulate armatures, sculpt clay, move paper cutouts, or pose 3D
computer-generated skeletal rigs. Each medium has advantages and
disadvantages, and requires that the artist develop a medium-specific
set of skills to create a visually compelling end-product [Lasseter
1994]. In this work, we consider the differences between 2D hand-
drawn animation and 3D computer-generated animation.

Sketching the basic idea with a pencil is quick, but art directing
hand-drawn animations is cumbersome. For example, if the direc-
tor wants a change in how the lead character’s skirt swishes, the
animator has to redraw the skirt for every frame. In contrast, the
medium of 3D computer animation makes many components easily
modifiable; the clothes can be resimulated, the viewing camera can
be moved, and the lighting can be changed with little work on the
part of the artist. This modifiability comes at the cost of increased
initial effort to set up the scene and dynamic simulations, yet it
enables 3D computer animation to be more easily art-directed than
traditional hand-drawn animation.

The skills involved in hand-drawn animation and 3D com-
puter animation are different too. Traditional animators are trained
to communicate the movement of the character through pencil
strokes [Johnston and Thomas 1995]. In contrast, 3D artists are
skilled at using computer software and at manipulating curves, con-
trol points, and inverse kinematics handles to construct a perfor-
mance for their character.

These observations motivate the question addressed in this arti-
cle: how can we connect these two different media so as to leverage
the programmability of 3D computer animation in the hand-drawn
medium, and the unique talent pool of traditional animators in the
3D computer-generated medium? The challenge here is that the el-
ements of 3D computer animation and 2D hand-drawn animation
are fundamentally incompatible; the character exists as a consis-
tent 3D object in the former, while 2D artists routinely introduce
inconsistencies in their drawings to add expressiveness to the char-
acter [Rademacher 1999]. There may, in fact, be no consistent geom-
etry that can be used to accurately describe a hand-drawn character
from all points of view, or to define the imaginary camera used by
the artist to create her drawing.

We propose that hand-drawn characters be represented by 3D
proxies with different levels of detail. In Figure 1, we arrange the
3D proxies that can be created for a given hand-drawn animation
according to increasing level of detail. For example, if we wanted to
attach a simulated balloon onto the wrist of a hand-drawn character
(Figure 1, top row), the level of detail for the 3D proxy would be
a plausible 3D trajectory for a chosen point (wrist marker) on the
2D hand-drawn character: the single-point 3D proxy. Attempting
to reconstruct the full 3D pose, minimizing an objective function
with rigidity constraints, or enforcing good ground contact models

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

8:2 • E. Jain et al.

Single-point

3D Polygonal
shapes

3N
N = number of

attachment points
(typically, N = 1,2,3)

Joint hierarchy

3D proxy
Degrees of
freedom Function

5V
V = number of tapered

cylinders
(typically, V = 1 to 25)

3J
J = number of

joints
(typically, J = 20)

Collision volume

Skinned, lit, rendered
from any viewpoint

Attachment point

Fig. 1. Three-dimensional proxies for hand-drawn characters are arranged
in increasing order of number of degrees of freedom. The first level is the
single-point proxy. The next level is approximate cylindrical models for
those body parts which interact with 3D scene elements. The third level is a
hierarchical joint model, which can be rigged, skinned, lit, and placed in a
3D scene.

would not only be excessive, but might minimize extraneous error
terms at the expense of introducing error in the trajectory that will
be visible in the final animation.

The next higher level of detail would be an approximate 3D
model composed of tapered cylinders and spheres. These 3D prox-
ies are well-suited to drive simulated effects like cloth and fluids,
without having to fit exactly to the hand-drawn pencil strokes, be-
cause they will only provide the driving signal and will never be
directly rendered. Here, the objective is to track points of contact
precisely, and approximate the rest of the character with polyg-
onal shapes, for example, precisely tracking points on the wrist
so that the scarves appear to be attached to the ballerina, but
approximating the arms as tapered cylinders (Figure 1, middle
row).

Finally, transferring the style of the hand-drawn animation onto
a hierarchical 3D joint model would allow traditionally trained an-
imators to control a classic skeleton-based 3D character; animators
who think in terms of pencil lines would be able to puppeteer 3D
characters that can also be rigged, skinned, lit, and accessorized
with simulated clothes (Figure 1, bottom row). Here, smoothness
and naturalness of motion take on more importance than accurately
tracking image pixels.

In this article, we present an integrated approach to generate
three levels of 3D proxies for a hand-animated character: the single-
point proxy, the tapered cylinder model, and the hierarchical joint
model. We frame the solution as a least squares minimization and
show that by reformulating the terms of the minimization according
to the level of detail desired in the 3D proxy, we can generate
these proxies for a hand-drawn character. Earlier versions of this
work were presented by Jain and colleagues [2009, 2010]. Here, we
generalize the technique and more extensively evaluate the various
underlying assumptions.

We have made certain design choices with the standard animation
pipeline in mind; when choosing inputs for the system, we employ
user interaction that can be reasonably integrated into the traditional
animation workflow. We present results on a variety of hand-drawn
animated characters, ranging from stick figures to a ballerina with
human shaped limbs, and evaluate the system through synthetic
tests and hand-animations that stretch the underlying assumptions.

2. RELATED WORK

We discuss past work on the use of 3D representations for 2D
objects in the Computer Graphics (CG) context and the techniques
used to generate them. There has also been a great deal of research
in reconstructing 3D human pose from images and we briefly survey
that body of work in the computer vision community.

2.1 Computer Graphics

One of the earliest forms of 3D proxy for a hand-drawn scene
element was used in the movie Spirit: 3D models of hand-animated
horses were carefully made to match the artist’s lines, and shots
switched seamlessly between the hand-drawn elements and the 3D
elements depending on whether the characters were seen in close-up
or long shots [Cooper 2002].

Petrovic and colleagues [2000] create a blobby 3D proxy to
generate ray-traced shadows for a 2D character by inflating the
2D shape along the third dimension. Their main contribution is a
graphical interface that allows the user to specify the relative depths
of every scene element that needs to be inflated. Correa and col-
leagues [1998] warp a 3D mesh model to match the artist-drawn
shape; the mesh model can then be relit and textured and rendered
to fill in the insides of the artist’s hand-drawn shape with an intri-
cate pattern. Johnston [2002] bypasses a full 3D proxy in favor of
only interpolating normals, a 2.5D proxy that is sufficient to inte-
grate 3D lighting with a hand drawing. All these methods are de-
signed to work with blobby shapes and do not maintain articulation
constraints.

There are also several previous techniques for lifting hand-drawn
articulated characters from 2D to 3D. All of these techniques deal
with various ways to resolve the forward-backward depth ambiguity.
For example, Davis and colleagues [2003] sort the multiple 3D
interpretations of a 2D pose according to joint angle constraints and
other heuristics, but leave the final selection to the user. Their goal is
to simplify the process of creating a 3D pose; the artist needs to know
how to draw and mouse-click, but need not be trained in rigging and
manipulating inverse kinematics handles. The generated 3D pose
can be thought of as a single-point 3D proxy because it consists
of 3D markers at joint locations. It would be time-consuming to
generate a 3D proxy by their method for a full animation because
of the nature of the user input involved.

Wei and colleagues [2010] generate physically realistic human
motion from uncalibrated monocular data. Their method relies heav-
ily on the assumption that the human skeleton is comprised of rigid

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

Three-Dimensional Proxies for Hand-Drawn Characters • 8:3

Image
plane

Camera
center

x

z (or z-depth)

yCamera
coordinate system
(x-axis is into the plane
ofthe paper)

Driving signal in 2D

Possible driving
signals in 3D

?

t = 1

t = 2

t = 3

(a) (b)

?

Input twirl animation: Adding a simulated skirt

Interpretation 1
Character is stationary,
camera moves around her.

Effect: Skirt will not flare.

Interpretation 2
Character twirls,
camera is stationary.

Effect: Skirt will flare.

Fig. 2. Ambiguities in creating a 3D proxy. (a) Depth ambiguity: Multiple 3D trajectories can yield the same 2D projected path. (b) Composite motion
ambiguity: The motion of the camera can not be disambiguated from the motion of the character if we are only given the image plane information.

bones and that there are various symmetries in the human body.
Newtonian physics, friction, and contact forces inform other terms
in their optimization, but need not be valid priors for traditional
hand-drawn animation.

In addition to the work on 3D interpretations of a given hand-
drawing, there has also been research on how a 2.5D popup may
be used. Sykora and colleagues [2010] employ user-specified depth
inequalities to generate a 2.5D popup that may be used for layer-
ing, shading, and generating stereoscopic views. Rivers and col-
leagues [2010] interpolate different views based on an underlying
2.5D model, so that a hand-drawn shape can be seen from a novel
viewpoint.

Computer graphics techniques have also been used to create back-
ground scenery, either in the form of 2D paintings manipulated to
look three dimensional [Wood et al. 1997; Robertson 1998], or as
a 3D scene, as in Tarzan’s Deep Canvas [Daniels 1999]. These
approaches do not allow for physical interaction between the hand-
drawn elements and the 3D elements; the CG background can be
composited with the hand-drawn foreground, but does not interact
with it, for example, there are no dynamically simulated ripples
when Tarzan steps into a pool of water. Our work addresses the
challenge of connecting a traditionally animated character with 3D
CG elements by enabling the character to drive the motion of the
3D scene elements via its 3D proxy.

2.2 Computer Vision

The recovery of 3D human pose from images has been studied in
the computer vision community for over three decades (see, for
example, Moeslund and Granum [2006] and Forsyth et al. [2005]).
At a high level, these methods look for a 3D pose which mini-
mizes the geometric projection error, and is constrained by priors
about the way humans are proportioned and how humans move;
these priors include limits on joint angles [Sminchisescu and Triggs
2003; Herda et al. 2004], physical models of the body [Rosenhahn
et al. 2007b], foot plants as a constraint [Rosenhahn et al. 2008],
and known limb lengths [Lee and Chen 1985; Taylor 2000]. Siden-
bladh and colleagues [2000] and Rosenhahn et al. [2007a] further

applied smoothness constraints across a video sequence. Articu-
lation constraints, to ensure that limbs must remain connected at
joints, have also been used in a number of approaches [Bregler and
Malik 1998; Wu et al. 2003; Demirdjian et al. 2003]. Recently,
dimensionality reduction methods, which rely on motion capture
data to learn mappings, have become popular [Sidenbladh et al.
2002; Grochow et al. 2004; Urtasun et al. 2006]. Along with these
generative approaches, a number of discriminative approaches have
also been proposed. These methods learn regression functions to
link appearance features to 3D structure [Elgammal and Lee 2004;
Sminchisescu et al. 2005; Agarwal and Triggs 2006; Ramanan et al.
2004; Bourdev and Malik 2009].

While researchers have demonstrated that a variety of priors are
useful to resolve the forward-backward depth ambiguity, the most
important assumption made in all these approaches is that the input
data has a true and consistent 3D interpretation. In our domain,
characters are hand-drawn, rather than being recorded via phys-
ical cameras, and talented animators often purposely violate the
constraints of a skeleton-based model.

3. APPROACH

The frames that are drawn by the artist contain a projected view of
the animated character as seen from a stationary or moving camera.
As a result, there are two types of ambiguity in creating a 3D proxy:
the depth ambiguity and the ambiguity created by the composition
of the character motion and the camera motion (illustrated in Fig-
ure 2). The depth ambiguity occurs because multiple 3D points can
project to the same 2D point (Figure 2(a)). The composite motion
ambiguity occurs because the hand-drawn frames do not contain
sufficient information to disambiguate the motion of the camera
from the motion of the character. Figure 2(b) illustrates the camera-
character motion ambiguity. For the purpose of articulated pose
reconstruction, Interpretation 1 and Interpretation 2 are equivalent.
However, when placing the character in a 3D virtual world, choos-
ing the correct interpretation is essential or the skirt will not have
the correct dynamic motion.

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

8:4 • E. Jain et al.

Fig. 3. Annotation: The user annotates the drawing with markers for joint
locations (left). Color segmentation of the different body parts for the fully-
fleshed characters (middle). Approximate bounding boxes, shown in red, for
the limbs (right). The bounding boxes for the right leg have been omitted
for clarity.

In this section, we will discuss how we preprocess raw data,
estimate the camera that the artist might have imagined, and resolve
the depth ambiguity for each of the three levels of 3D proxies: the
single-point proxy, the tapered cylinder model, and the hierarchical
joint model.

3.1 User Input

Because automatically tracking body parts in hand drawings is
noisy, we ask a user to provide annotation of the hand-drawn ani-
mation. We also ask the user to select a motion capture segment to
aid in resolving the depth and camera-character motion ambiguity.
The user also provides an initialization that is used to estimate the
artist’s camera.

3.1.1 Annotating the Hand-Drawings. We ask a user (who can
be a lay person) to specify the skeleton of the hand-drawn character
with N virtual markers and the approximate bounding box for every
limb. This annotation is done for each frame of the input animation.
The user also provides a segmentation of the different body parts
by color coding the interior of the hand-drawn figure (Figure 3).
These user inputs, shown in Figure 3, are designed to fit into the
traditional 2D animation workflow [Culhane 1990; Johnston and
Thomas 1995]. The workflow begins with the keyframe animator,
who roughs out six to eight frames for each second of animation.
The cleanup and inbetweening artist cleans up the rough lines and
draws the intermediate frames. At this stage, the virtual markers
and bounding boxes can be marked easily without requiring sig-
nificant additional effort. Then, the drawings are transferred to the
ink and paint department where the colors are painted in. The color
segmentation user input can be obtained as part of the painting
process.

For each frame i, the user-specified virtual markers on the hand-
drawn frames are denoted x̃i = [x̃1, ỹ1, x̃2, ỹ2, . . . , x̃N , ỹN]T .

3.1.2 Selecting a Motion Capture Segment. The user selects a
motion capture segment that has a similar sequence of actions as the
hand-drawn sequence. The 3D poses in this motion capture segment
will be used to resolve the depth ambiguity. The selection of the
motion capture segment also helps resolve the composite camera-

character motion ambiguity (Figure 2(b)); the system assumes that
the root of the character moves according to the motion capture
segment, and the remaining motion is camera motion. We therefore
refer to this segment as a motion prior. This user input may be
obtained from either the keyframe or cleanup animator through an
interface that allows her to browse a motion capture database.

The motion prior can differ from the hand-animation in
timing because we preprocess the segment via the Dynamic
Time Warp algorithm [Sakoe and Chiba 1990; Ellis 2003].
We denote the time-warped segment X̃. For a frame i, the
3D marker positions for the motion prior poses are X̃i =
[X̃1, Ỹ1, Z̃1, 1, X̃2, Ỹ2, Z̃2, 1, . . . , Z̃N , 1]T , expressed in homoge-
neous world coordinates. This sequence of poses could be a se-
quence produced by blending, interpolating, or editing poses from
a database of motion capture or key frame motion.

3.1.3 Rotating a Motion Prior Pose. As a first approximation
to the camera imagined by the artist, we ask the user to specify an
orthographic camera R2×3. Because roll can be reasonably assumed
to be zero, this camera is characterized by two degrees of freedom:
azimuth angle and elevation. The user specifies these angles through
a graphical interface that allows the motion prior pose to be rotated
until its orthographic projection visually matches the hand-drawing.
The rotation angles are used to compute R2×3, an orthographic ini-
tialization for the artist’s camera in the first frame of the animation.
The estimation of camera motion is described in Section 3.3.

3.2 Preprocessing

When transferring the style of the hand-drawn animation onto a
hierarchical 3D skeleton, there is a trade-off between tracking the
artist’s lines precisely and generating smooth, natural 3D motion.
This trade-off exists because talented hand-animators purposefully
violate the rigidity of the human skeleton to convey emotion via
squash and stretch. A hierarchical joint skeleton does not provide
the same affordances; thus, tracking a squashed arm accurately
might result in unnatural movement for the elbow joint in the 3D
proxy.

We introduce a pose descriptor to extract the pose of the hand-
drawn character, while filtering out changes in limb length. This
pose descriptor quantitatively describes a 2D hand-drawn pose,
and is translation and scale invariant. The intuition here is that a
character can be in the same pose at different locations, and two
characters can have the same pose even if their relative limb lengths
are different. In this preprocessing step, we modify the motion prior
poses to match the pose descriptors for the hand-drawn poses.

For a given 2D pose, the descriptor starts at the root (which is the
pelvis) and travels every hierarchical limb chain. For every link in
the chain, we determine the position vector of the child marker in a
coordinate frame fixed to its parent. As illustrated in Figure 4, the
position vector for the wrist would be calculated with respect to a
coordinate frame fixed to the elbow. The reference orientation for
this coordinate frame can be absolute (i.e., oriented along the x-axis
of the world coordinate frame), or relative (i.e., oriented along the
corresponding limb, in this case, right radius). The pose descriptor
P for a given pose would be the vector of polar angles for the
position vectors of K virtual markers of the skeletal model

P = [θ1, θ2, . . . , θK]T , (1)

where K is the number of limbs that are needed to characterize the
pose.

We first compute the pose descriptors for the hand drawings. Then
the 3D motion prior poses X̃i are projected to two dimensions with

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

Three-Dimensional Proxies for Hand-Drawn Characters • 8:5

Projected motion capture pose Hand-drawn pose Modified projection

U
pp

er
 b

od
y

L
ow

er
 b

od
y

Fig. 4. Preprocessing: The pose descriptor consists of in-the-image-plane
angles for every limb segment. The limb segments of the projected motion
prior pose are modified to match the pose descriptor for the hand-drawn
pose via planar rotation.

the camera approximation R. The matrix R is computed by taking
the Kronecker product, R = IN ⊗R2×3. The projected motion prior
poses are shown in Figure 4 (far left), where x̃2Di

= RX̃i .
The character model is divided into “upper body”, which consists

of the hierarchical chains containing the two arms and the head, and
“lower body”, which consists of the limb chains involving the legs
(Figure 4). We start modifying the projected motion prior pose at the
pelvis and work out along each hierarchical chain of the upper body.
Each limb segment of the projected motion prior pose is rotated in
the image plane so that the in-plane polar angle is the same as the
desired pose descriptor, that is, the corresponding polar angle in the
hand-drawn pose (Figure 4, insets).

The modified 2D motion prior pose, x̃m
i , is illustrated in Figure 4

(far right). The lower body is not modified in order to transfer
the ground contacts of the motion capture data onto the 3D joint
hierarchy.

3.3 Camera Estimation

As illustrated in Figure 2(b), it is essential to resolve the camera-
character motion ambiguity to place a 3D proxy in a virtual 3D
world. However, the hand-drawings alone do not contain sufficient
information to disambiguate the motion of the camera from the
motion of the character. We resolve this ambiguity by registering
the poses of the time-warped motion prior X̃i with the hand-drawn
poses x̃i . The underlying assumption is that the root of the character
moves according to the motion prior, any movement in the hand-
drawn markers over and above the movement of the motion prior
poses is attributed to camera movement.

For each frame i, we estimate a projection matrix Mi that mini-
mizes the geometric projection error, eg ,

eg =
K/2∑

t=−K/2

∥∥x̃i+t − xproj

i+t

∥∥,

where xproj

i+t
∼= MiX̃i+t . We compute across a moving window

around the frame i to increase robustness to noise.
In addition to minimizing projection error, we also want Mi

to characterize a physically realizable camera that can render 3D
elements: skew and tilt are set to zero, the scale factors are com-
puted from the image resolution, and the focal length is prespeci-
fied. This formulation is similar to Hornung and colleagues [2007]
and Petrovic and colleagues [2000]. As a result, only the exter-
nal parameters for Mi remain to be estimated: roll, pitch, yaw,
and the location of the center. We denote the external parameters
ρ(i) = (θx(i), θy(i), θz(i), tx(i), ty(i), tz(i))T .

Constraints on the external parameters are that the renderable
camera should be above ground level, el = (tz − μ), roll orienta-
tion should be minimum, eo = |θy |, and the camera should move

Image plane

Camera

3D marker
positions

Back-projected
rays

Fig. 5. Attachment points: Markers on the hand drawing are back-
projected. Depth is obtained from the motion prior. The blue 3D markers
illustrate what the solution looks like for a chosen frame.

smoothly, es = ‖ρ(i) − ρ(i − 1)‖. Therefore, we estimate ρ∗(i)
such that

ρ∗(i) = argmin
ρ

(ω1eg + ω2el + ω3eo + ω4es), (2)

where ω1, ω2, ω3 and ω4 are the associated weights. In practice,
ω1 = 1, ω2 = ω3 = ω4 = 0.0005, and μ = 1. We use a nonlinear
optimizer, with the roll initialized to zero, the yaw and pitch set
to the user-provided orthographic initialization, and the location of
the center initialized approximately so that the first motion capture
pose fits inside the image plane.

3.4 Detail-Dependent Minimization for 3D Proxy

Figure 1 illustrates the levels of 3D proxies for a hand-drawn char-
acter. We generate every 3D proxy by minimizing a weighted sum
of three terms. Depending on the function of the 3D proxy, the indi-
vidual terms are reformulated to best reflect the properties desired
in the solution.

The first term is called the input-match term ea and causes the
3D proxy to follow the hand-animation. Because the artist provides
only the perspective drawing of the character, we need to infer the
missing depth information. The second error term is the motion
prior, em, which provides a data-driven prior for depth from motion
capture data. The third term is the regularization term, er . These
terms can be related to the formulation of 3D pose reconstruction in
the computer vision literature: the input-match term, ea , is analogous
to the geometric projection error, the motion prior, em, is analogous
to the data-driven or physics priors, and the regularization term, er ,
is analogous to temporal smoothing.

3.4.1 Attachment Points. To attach a 3D element to a hand-
drawn character (for example, a simulated balloon onto the wrist
of a hand-drawn figure), the level of detail for the proxy is plausi-
ble 3D trajectories for the attachment points. These 3D trajectories
must achieve perfect image plane alignment with the hand-drawn
character; only then will the 3D element appear to be convincingly
attached to the artist-drawn character. Figure 5 illustrates the solu-
tion for one frame geometrically.

For each frame i, Mi is the projection operator and the 3D position
of each marker j is denoted Xw

ij = [Xw
ij , Y

w
ij , Zw

ij , 1]T in homoge-
neous world coordinates. Then, perfect image plane alignment is
achieved by minimizing the input-match error eij

a ,

eij
a = ∥∥x̃ij − xproj

ij

∥∥, (3)

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

8:6 • E. Jain et al.

where x̃ij are the virtual markers on the hand-drawing, and xproj

ij are
the projections of the corresponding markers of the 3D proxy,

xproj

ij
∼= MiX̃w

ij .

There can be infinitely many solutions which minimize the input-
match error in Eq. (3). The motion prior term eij

m resolves this
ambiguity by pulling the z-depth for each marker as close as possible
to the corresponding value for the motion prior poses, X̃. For the ith

frame,

eij
m = ∥∥mT

3 X̃ij − mT
3 Xw

ij

∥∥ ∀j = 1, . . . , N. (4)

The regularization term eij
r keeps the final trajectory temporally

coherent. For each marker j ,

eij
r = ∥∥Xw

ij − Xw
(i+1)j

∥∥. (5)

Finally, normalization constraints fix the scale factor in homoge-
neous coordinates to unity.

[0, 0, 0, 1] Xw
ij = 1 ∀j = 1, . . . , N (6)

The Appendix contains details for how these terms are composed
into a linear system, which can be solved in closed form.

3.4.2 Collision Volumes. To create believable interaction be-
tween the hand-drawn character and 3D objects, the proxy consists
of 3D polygonal shapes that track the hand-drawn lines. Example
interactions include splashes when the hand-drawn figure collides
with simulated water, or a simulated scarf wrapping around the
waist of the hand-drawn character. Because the 3D proxy only pro-
vides collision volumes and is never directly rendered, the polygonal
shapes need not conform exactly to the hand-drawn lines. The three
error terms, ea , em, and er , are reformulated to reflect these new
constraints. The polygonal shapes used here are tapered cylinders
for the arms, legs, and torso, and spheres for the joints, but other
shapes would be feasible too.

The 3D polygonal shapes are generated by first computing the
3D positions of the end points of the cylinders. Here, as we explain
the details for one limb, we will drop indices for clarity. Figure 6
shows the 3D positions, XA and XB , of the upper leg markers. This
computation is identical to Section 3.4.1.

A tapered cylinder collision volume is completely characterized
by the direction of its cylindrical axis, its height, and the radii of
each face. The direction of the cylindrical axis �ax and the height
of the cylinder h are determined from the end point positions, XA

and XB (Figure 6, Inset A). The radii of the two faces, r1 and r2,
depend on the thickness of the limb, as drawn by the artist. A simple
algorithm approximates the artist-drawn limb with a bounding box,
shown in Figure 6 as the quadrilateral p1, p2, p3, p4. This algorithm
identifies the artist-sketched limb outline by locating the first black
pixel in the direction perpendicular to the line joining the virtual
markers for that limb. Overlap between body parts will confuse
this algorithm. When the arm crosses the torso, for example, the
algorithm incorrectly marks the boundary of the arm as the torso
boundary. This overlap may never occur for some actions (jumping
jacks, for example), and may occur for other actions such as a
dance. In the ballet example, an arm overlaps with the torso for
43 of the 200 frames. Such overlap cases are corrected by the
user through an annotation interface that allows the user to mark
the bounding box end points on the hand-drawing. In practice, it
takes less than ten seconds to mark out the four end points for a
limb.

Intuitively, the radii of the two faces, r1 and r2, are determined
by back-projecting the image plane bounding box (p1, p2, p3, p4)

Camera
center

XA

XB

p1
p2

p4 p3

Image
plane

INSET A

P

P

3P

h1

4

2P
P

P
3

r1

r2

XA

XB

ax

Image plane

Camera
center

a

p
1

P1

f
z

r1

p
4

P4

XA 3D world
points

Image plane points

INSET B

Fig. 6. Collision volumes: User-specified markers are back-projected to
obtain the 3D marker positions XA and XB . Inset A: The cylindrical collision
volume is characterized by its axis and height, and the radii of each face.
Inset B: This inset describes how we compute the radius of one face of the
cylinder. The image plane points p1, p4 are back-projected to P1, P4 such
that the z-depth is the same as the z-depth for the marker A.

to the same z-depth as the 3D markers XA and XB (Figure 6, Inset
B). Then, we spin the back-projected quadrilateral about the axis �ax
and the volume of revolution is the tapered cylinder proxy for the
limb. Formally, for each point pq (q = 1, 2, 3, 4), let Pq denote their
back-projected 3D positions. The input-match term ea is redefined
so that the 3D positions Pq align with the image plane bounding
box,

ea = ∥∥pq − pproj
q

∥∥, (7)

where pproj
q

∼= MPq . The error term em is redefined so that the
z-depth for Pq is the same as the z-depth for the markers (illustrated
in Figure 6, Inset B),

em = ∥∥mT
3 Pq − mT

3 XA

∥∥ for q = 1 and 4, (8)

em = ∥∥mT
3 Pq − mT

3 XB

∥∥ for q = 2 and 3. (9)

We do not have a regularization term because the 3D positions XA

and XB are already temporally smooth. The weighted sum of the
error terms is linearized and minimized as detailed in the Appendix.
The radii for the faces of the tapered cylinder are computed as

r1 =
√‖P1 − P4‖

2
, r2 =

√‖P2 − P3‖
2

. (10)

The sphere for a joint has the same radius as the corresponding
tapered cylinder for the limb. Figure 7 shows the collision volumes
overlaid with the hand-drawings on the left, and an alternate view-
point of the same pose on the right of each part. The 3D proxy
does not exactly conform to the artist’s lines, but is sufficient to
create believable interactions with dynamic simulations like cloth.
Because the collision volumes can change size and shape indepen-
dent of each other, this 3D proxy is well-suited to track the body of

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

Three-Dimensional Proxies for Hand-Drawn Characters • 8:7

Fig. 7. Collision volumes: The hand-drawings are shown overlaid with the
collision volumes. The collision volumes match the drawings approximately,
but need not exactly conform to the artist’s lines. We also show the collision
volumes from an alternate viewpoint.

Fig. 8. Modified motion capture pose, 3D markers, hierarchical skeletal
model.

a hand-animated character, even when the artist changes its size and
shape (for example, if a dancer is drawn taller in frame 10 relative
to frame 1 to create the illusion of reaching up).

3.4.3 Skinned, Lit, and Rendered Model. The third level of
detail for the 3D proxy of the hand-drawn character is a skeletal
model, which is controlled via a joint hierarchy, and can be skinned,
lit, and rendered (Figure 8, right). When creating this proxy, the
goal is to create 3D motion for the skeleton based on the artist’s
hand-drawn animation. Because this 3D proxy can be rendered
from any possible viewpoint, the error terms in our minimization
are reformulated to maintain naturalness of motion and preserve
ground contacts while transferring the style of the hand animation
onto the skeleton.

The user-specified virtual markers on the hand drawings, x̃ij ,
contain the squash and stretch used by the artist to convey emotion.
Because there is no precise mathematical model for how artists
extend and compress the limbs of a character, the intentional change
in limb lengths is indistinguishable from imprecision in the drawing
and noise introduced during annotation. However, the limb lengths
for the skeletal model are fixed. As a result, computing joint angle
values directly from the user-specified virtual markers leads to large
errors in joint angles.

We reformulate the input-match error term to filter out some
of this noise. Recall that for each hand-drawn pose x̃i , the corre-

sponding pose in the motion prior segment, X̃i , was preprocessed
so that the pose descriptors matched (Section 3.2). The upper body
of the motion prior pose was modified while the lower body was
left unchanged to preserve ground contacts. The input-match term
for the skeletal model proxy aligns the 3D proxy to the modified
pose xm

i , instead of the original hand-drawn pose x̃i (Figure 8, left
and middle). Thus,

ei
a =

N∑
j=1

∥∥RXw
ij − xm

ij

∥∥, (11)

where R was the orthographic approximation to the artistic camera.
The motion prior pose X̃i is a reasonable prior for the desired 3D
marker positions Xw

i . Thus, the motion prior error term, ei
m, is simply

ei
m =

N∑
j=1

∥∥Xw
ij − X̃ij

∥∥. (12)

Because the individual limbs of the 3D skeletal model are not
squashable or stretchable, we additionally enforce constant limb
lengths. Let the 3D positions of the two end-point virtual markers
for a given limb be Xij1 = (xij1 , yij1 , zij1) and Xij2 = (xij2 , yij2 , zij2).
Then, the computed squared length of the limb, l2

ij , is

l2
ij = (xij1 − xij2)2 + (yij1 − yij2)2 + (zij1 − zij2)2. (13)

This computed length must be equal to the actual skeletal length Lj

of the same limb, computed from the motion prior data. Mathemat-
ically,

ei
r =

N∑
j=1

∥∥l2
ij − L2

j

∥∥, (14)

We can linearize Eq. (14) using a Taylor series expansion around
the corresponding motion prior pose and stack the length equations
for each limb to yield

ei
r = ∥∥Ai

limbXw
i − bi

limb

∥∥, (15)

where Ai
limb and bi

limb are functions of the motion prior pose X̃i

and L.
The three error terms are stacked together as a linear system of

equations

W

⎡
⎣ R

Ai
limb

I

⎤
⎦ Xw

i =
⎡
⎣ x̃m

i

bi
limb

X̃ij

⎤
⎦ , (16)

WAi
f ullX

w
i = bi

f ull . (17)

where W contains the weights of the various error terms.
Typically, the number of markers for each pose is N = 24,

which makes Xw
i a vector of length 72. The work of Safonova and

colleagues [2004] shows that most dynamic human motions can
be described by a low-dimensional PCA (Principal Components
Analysis) subspace. Building on this result, we look for the solution
to Eq. (17) in a low-dimensional subspace of an activity-specific
motion capture database. Let μ denote the mean of the motion data
and vk denote the basis vectors or the principal components obtained
through PCA. Further, let Xb

i be the coordinates in PCA space, and
V be a 3N × P matrix of basis vectors. We have

Xw
i = μ +

P∑
k=1

xb
ikvk (18)

= μ + VXb
i , (19)

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

8:8 • E. Jain et al.

Fig. 9. (a) The final composited frame with the hand-drawn character
and the rendered 3D elements. (b) Collision volumes imported into the
3D animation package. (c) Rendered scene elements. (d) Z-depth for the
rendered elements. (e) Occlusion map for the rendered elements.

where Xb
i is a vector comprising the coordinates for each of the P

basis vectors. The weighted least squares system in Eq. (17) can
then be written as

WAi
f ull

(
VXb

i + μ
) = bi

f ull , (20)

WAi
f ullVXb

i = bi
f ull − WAi

f ullμ, (21)

AXb
i = b. (22)

We can find the least squares solution to Eq. (22) and reproject Xb
i

to get the 3D marker positions Xw
ij . As this system is linear, the

solution is the global minimum, is numerically stable, and can be
found in closed form.

In a hierarchical skeletal model, every limb is described by three
joint angles (roll, pitch, and yaw) relative to its parent limb. We
convert the marker positions Xw

i into joint angles. The root joint for
our character model is the pelvis, therefore, we start by recovering
the rotation of the pelvis with respect to the world coordinate frame
and work our way through each hierarchical chain to generate the
full pose [Jain et al. 2009]. The joint angles for our skeletal model
describe the rotation of the limb segment in the xyz ordering;
when we convert this description to the zyx ordering, θx and θy

are functions of 3D marker positions (roll and pitch), and θz is the
“yaw” angle, which cannot be computed from marker positions. We
find the rotation of the corresponding limb segment in the motion
prior, and simply use that θz to complete the generated 3D pose
(Figure 8).

3.5 Interaction between Proxy and Scene Elements

The 3D proxy model can be imported into any commercially avail-
able modeling and animation software package. As a 3D scene
element, the proxy can interact with other objects in the scene. For
example, the hierarchical joint model could be imported into a Maya
scene, and skinned. We can then put a dynamically simulated skirt
on the 3D model, relight the scene, and move the camera around,
as in Figure 18.

In Figure 9, the collision volumes for the jumping jacks character
have been imported into a Maya scene. An artist has created pom-
poms and a skirt. The Maya dynamics engine [Stam 2009] is used
to physically simulate the motion of the pompoms and the skirt,
and their interaction with the 3D collision volumes of the hand-

p
1 p2

p4 p3

h

r

Hand-drawn image

Rendered scene element:
red plane

Fig. 10. Depth ordering: Our method generates an alpha map for the hand-
drawn image that maintains depth ordering between the hand-drawn pixels
and the rendered 3D scene elements. The depth map for the 3D elements are
rendered. The depth map for the hand-drawn character is computed from
known marker depth values.

drawn character. Maya is also used to render the “beauty” pass, ϒr
i ,

which contains the scene elements with texture and lighting (not
the 3D polygons comprising the proxy), the depth map �r

i , and the
occlusion map ηr

i (Figure 9(c)–(e)).
We composite the rendered skirt and pompoms with the hand-

animation to obtain simulated secondary motion for the jumping
jacks character (the same procedure is used for all the animation se-
quences). The depth map �h

i for the hand-drawn image is computed
by linearly interpolating known depths. For the skinned characters,
the pixels belonging to a given limb are obtained by color segmen-
tation (color coding done as part of user input in Section 3.1). For
stick figures, we segment out the dark pixels by thresholding inside
an oriented window along the limb v (v = 1, 2, ..V).

The z-depth values for the pixels corresponding to the N virtual
markers are known and can be interpolated to generate �h

i . For
simplicity, we will drop the indices and denote the known depths
as x̃. Let l denote the line joining the end-point markers for limb v,
whose image positions are x̃a = (ax, ay) and x̃b = (bx, by). Then, l
can be computed

l = x̃b − x̃a

‖x̃b − x̃a‖ . (23)

Every pixel p̃ = (p̃x, p̃y) belonging to the limb is assigned the same
depth as the point p closest to it on l. We perform this interpolation
for every limb in turn to obtain the depth �h

i , and then scale it to
match the units of �r

i (Figure 10).
The occlusion map ηh

i for the hand-drawn frame is

ηh
i =

⎧⎪⎨
⎪⎩

1, in the interior of the hand-drawn figure,
1, on the artist’s lines,
0, otherwise.

(24)

The alpha matte αi for the hand-drawn frame ϒh
i is defined as the

inverse of the gray-scale value, αi = (255 − ϒh
i)/255. This alpha

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

Three-Dimensional Proxies for Hand-Drawn Characters • 8:9

Fig. 11. Stylized walk across the screen: The dynamics of the balloon, its string, and the colored balls are driven by the motion of the hand-drawn character.

Fig. 12. Stylized walk across the screen: In the top row, snow deforms
as the character steps through it. The deformation is generated by cylinder
proxies for the feet of the character. In the bottom row, simulated rain
bounces off a 3D umbrella attached to the wrist. The umbrella is attached to
the hand-drawn character via a single-point proxy for the wrist.

matte is modified to incorporate depth ordering. For all pixels p
where ηh

i (p) = 1,

αnewi =
{

αi, if �h
i < �r

i ,

0, otherwise.
(25)

The final composited image Ifinali is computed

Ifinali = αnewiϒ
h
i + (1 − αnewi)ϒ

r
i . (26)

Because the final image is obtained by compositing the rendered
3D elements with the original hand drawing (not its 3D proxy), the
visibility of the 3D elements is correct as long as the depth map �h

i

is generated with the correct depth ordering.

4. RESULTS

We present results on a variety of hand-animated characters: a ballet
dancer, a goofy character doing jumping jacks, a character doing
a stylized walk across the screen, a “happy” flower, a little girl
twirling, and a character ducking low. The hand animations include
stick figures and fully fleshed characters, as well as stationary cam-
eras and tracking cameras.

In Figure 11, the hand-drawn character “holds” a simulated 3D
balloon and “kicks” the balls on the ground. The 3D balloon is
attached to the single-point 3D proxy for the hand-drawn character,

Fig. 13. Twirling girl: Two frames from an animation of a little girl showing
off her new skirt. The girl is hand-animated. The skirt is a 3D cloth simulation
driven by a 3D cylinder proxy for the girl’s body.

Fig. 14. Pedestrian: A simulated water balloon falls from the sky on a hand-
drawn pedestrian. The balloon is a cloth simulation and is filled with water
particles. Both the cloth and the water interact with the collision volumes
for the hand-drawn character. The camera tracks the character as he walks
and stops when he ducks.

that is, the 3D trajectory of the wrist marker. Cylinder proxies for the
feet cause the balls on the floor to move. Figure 12 shows sample
frames from the animated sequence of a character performing a
stylized walk. The example in the top row shows the deformation
of the snow, driven by a 3D cylinder proxy that approximates the
character’s foot. In the bottom row, the umbrella is attached to the
3D marker for the wrist of the character. Simulated rain splashes
and bounces off the 3D umbrella.

Figures 13, 14, and 15 show results with cloth simulations. In
Figure 13, the 3D proxy for the little girl is the tapered cylinder
model. The skirt is a cloth simulation driven by the 3D proxy, then

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

8:10 • E. Jain et al.

Fig. 15. Ballet dancer: Scarves are simulated as 3D cloth. They are attached to the wrists of the dancer via single-point proxies for the wrist, and interact with
the 3D cylinder proxy for the body of the hand-drawn dancer, and thus, wrap around her waist.

rendered and composited onto the hand animation. Thus, the simu-
lated skirt appears to be twirled by the hand-drawn little girl. Fig-
ure 14 shows a water balloon falling from the sky on a pedestrian.
The pedestrian is a hand-animated character. The balloon is a sim-
ulated cloth object and the water inside it is comprised of particles.
The balloon bursts when it comes in contact with the 3D proxy for
the character and we see it snag on his body on subsequent frames.
In Figure 15, two scarves are attached to the wrists of the dancer.
The cloth simulation is driven by the three-dimensional trajectory
of the wrist proxies, and interacts with the 3D polygons for the body
of the ballerina.

Figure 16 demonstrates the advantage of leveraging 3D simu-
lation to create secondary motion for a hand animation. Delicate
effects like the strands of the pompoms, water splashing in a re-
alistic way, and the bounce of a clothesline would all be time
consuming to hand animate to a comparable degree of detail.
The pompoms are attached to the character’s wrist, while all the
other effects use the tapered cylinder 3D proxy for the hand-drawn
character.

We also present examples where we have transferred the style
of the hand-animation onto hierarchical joint models. The joint
model proxies for the stylized walk, jumping jacks, and “happy”
flower sequences are compared with the corresponding motion prior
poses in Figure 17; note how the arms in the 3D proxy pose match
the hand-drawn character, even though the motion prior pose is

different. In Figure 18, we see the 3D ballerina from two different
camera viewpoints.

In all the results presented, user effort can be divided into three
parts.

—Cleanup/ink-and-paint stage: Marking out dots or user-specified
virtual markers (1 minute per frame), marking bounding boxes
(3–4 minutes per frame), color segmentation of body parts (7–
10 minutes per frame using a stylus and tablet, and a standard
brush-based paint program).

—Selecting a motion capture segment: 20–30 minutes.

—Creating 3D simulation in Maya: 2–10 hours (2 hours for the
simple rigid bodies, 10 hours for the cloth). The tuning time
is dependent on the user’s familiarity with the tool and is
equivalent to the tuning required to add any visual effect to a
3D animation. Maya can be replaced by any other simulation
engine.

5. EVALUATION

In our method, the user provides the motion prior by selecting a suit-
able motion capture segment from a database. This prior influences
different error terms in the minimization depending on the required
3D proxy. We examine the dependence of our method on the motion

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

Three-Dimensional Proxies for Hand-Drawn Characters • 8:11

Fig. 16. Goofy character doing jumping jacks: Water splashes in response to the feet (top row); the pom-poms deform in a physically realistic way, and the
skirt billows around the character’s legs (middle row); and the character’s hand interacts with clothes on the clothesline (bottom row).

prior through a synthetic example: a motion capture walk sequence
(normal walk in a straight line) projected to 2D.

5.1 Motion Capture Data Provides Only z-Depth

Here, we compute the error in the 3D positions of virtual markers
when the 2D markers of the synthetic example are back-projected
under a known projection operator, and the z-depth is provided by
different motion capture segments. Essentially, the motion prior X̃
in Eq. (4) is computed from five motion capture segments: a walk
sequence from a different actor, a run, a broad jump, a side shuffle,
and a walk along a curve. Error is defined as the difference in z-
depth value from ground truth, averaged over all N markers. Figure
19 illustrates that broad jump and run have similar numerical error

in depth; the depth ordering for the limbs is similar for these actions
when viewed in profile. Figure 20 shows sample frames when the
z-depth is provided by a “happy walk” motion capture segment.
Even though the motion capture walk is stylistically different (arms
swing more, legs step out further), the result matches the ground
truth quite closely. Figure 21 shows sample frames when the z-depth
is provided by a “curved walk”. Because the actor curves towards
the camera, the changing depth information causes our result to
curve towards the camera as well.

This evaluation shows that a motion capture segment that works
well provides a reasonable prior for both root motion and relative
depths of different limbs. In the case of the curved walk, the large er-
ror in z-depth is mostly because the motion of the root was different
from ground truth. In the case of the side shuffle, root motion was

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

8:12 • E. Jain et al.

Fig. 17. For each character, the top row is the hand-drawn animation, the
middle row shows our result, and the bottom row shows the corresponding
motion capture poses. The best-matching motion capture segment in the
database contains a similar sequence of actions, but not necessarily the same
poses as the hand-animation. Even if the database were larger, the motion
capture poses might never exactly match the hand-animated poses because
of physical limits. For example, we found that the playful nature of jumping
jacks animation (which was elegantly communicated by the artist by drawing
a bobbing head) was quite difficult for a human actor to perform because it
is hard to perform a vigorous action like jumping jacks while bobbing the
head in sync. Modifying the motion capture pose via the pose descriptor
allows our algorithm to create this playful head bob for the 3D proxy.

Fig. 18. The hand-drawn frame with the corresponding renderings from
two views. The skirt is a dynamically simulated element. The lighting can
be changed easily.

quite similar to the ground truth (straight line, maintaining almost
the same depth from the camera for the entire duration). However,
the relative depths of the limbs were completely different. The happy
walk balanced both these priors.

10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

1

Time

curved walk

broad jump

side shuffle

run

happy walk (different subject)

walk (ground truth)

Fig. 19. Different motion capture segments affect the error in z-depth. The
normal walk is the ground truth. The z-depth error for the curved walk
increases as the motion capture poses veer towards the camera. The lowest
error is seen in a happy walk sequence captured on a different actor and this
motion could be used as a driving signal. Run and side shuffle have smaller
errors than the curved walk, but for detailed interaction, these motions would
probably also not provide sufficiently accurate z-depth values.

5.2 Motion Capture Data Influences Input-Match
Term

In Section 3.4.3, we reformulate the input-match term ea to align
the 3D proxy to the modified motion capture pose, rather than the
original hand-drawn pose. The modification is intended to transfer
the style of hand-animation onto the 3D proxy, while filtering out
noise. Here, we evaluate the question: was the modification success-
ful, or are we simply playing back the motion prior? Numerically,
the modification should cause the 3D proxy to be a better match to
the artist-drawn animation than the motion prior.

The input is a motion capture walk (“normal walk”) projected
to 2D. The motion prior is chosen to be a stylistically different
walk (happy walk) captured on a different subject. We compare the
distance between markers on the ground truth with markers on the
the motion prior and the 3D proxy. The Root Mean Squared (RMS)
error for each virtual marker is shown in Figure 22. The ticks on
the x-axis represent the virtual markers. Ticks 1 through 42 are
markers on the “upper body”, and Ticks 43 through 72 represent
markers on the “lower body”. The RMS error between the ground
truth marker positions and the 3D marker positions of the “happy
walk” motion prior, averaged over a 100 frame segment, are shown
in red. Because the limb segments belonging to the upper body
are modified to match the pose descriptor of the synthetic input
markers, we can see that the error for these markers is reduced in
the 3D proxy (blue), while the error for the lower body markers is
unchanged, as expected.

6. DISCUSSION

In this work we have shown that connecting hand-drawn animation
with 3D computer animation offers many advantages; simulating
physically-driven clothes for a hand-drawn character, for example,
or empowering traditionally trained animators to contribute to a
3D character’s performance. This connection is made possible by
generating a 3D representation, or proxy, for the 2D hand-drawn
character, and allowing the proxy to interact with the other scene
elements in the 3D virtual world. Our key observation is that we
should create different levels of detail in the 3D proxy for different

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

Three-Dimensional Proxies for Hand-Drawn Characters • 8:13

Fig. 20. We compare the ground-truth walk (black, top row) with our result (purple, middle row), and the motion capture segment which provided z-depth
information (green, bottom row). This motion capture segment is a “happy walk”, where the actor walked in the same direction but swung his arms and legs
higher to communicate happiness. Even though the 3D marker positions for the motion capture poses are quite different, the result is close to the ground-truth
pose because the motion capture poses provide only depth.

Fig. 21. We compare the ground-truth walk (black, top row) against our result (purple, middle row), when z-depth information is provided by a “curved walk”
motion capture segment (green, bottom row). Because the motion capture poses curve towards the camera, the z-depth values are not the same as the z-depth
values for the ground-truth poses. We can see that our result also curves towards the camera because the result poses have the same z-depths as the motion
capture poses.

levels of interaction between the hand-drawn character and the 3D
scene elements.

We reformulate three basic error terms for each level of detail
and show that they may be linearized and thus, minimized in closed
form. The first error term, the input-match term, causes the 3D
proxy to follow the hand-animation. A limitation of our method is
that the skeletal model 3D proxy will follow the style of the hand-
drawn animation in the upper body movement, but will move like the
motion capture segment in the lower body. For example, if the hand-
drawn ballerina lifts her leg higher than the motion captured actor in
attitude derrière (Figure 23, top row), then the 3D proxy ballerina
will not match the hand-drawn leg pose exactly. This mismatch
occurs because the skeletal model 3D proxy is generated by back-
projecting the modified motion capture poses. The lower body limbs

are not modified with the pose descriptor because rotating the leg
and feet segments would result in loss of ground contact. The hand-
drawn character is proportioned differently than the motion capture
model, and its body proportions also vary across the frames of the
hand-drawn sequence. Therefore, the lost ground contact cannot
trivially be corrected by a global translation of the pelvis. This
limitation of the pose descriptor can be alleviated in part by having
a large motion capture database from which to select the motion
priors. Alternately, we could plant the feet explicitly, and solve
for a skeleton via nonlinear optimization. As this is susceptible
to local minima solutions, future work would be to linearize such
constraints.

The motion prior error term provides a data-driven prior for in-
ferring the z-depth. Our method is thus limited to hand-animations

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

8:14 • E. Jain et al.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 73
0

0.005

0.01

0.015

0.02

0.025

0.03

virtual markers

R
M

S
 e

rr
or

 in
 3

D
 m

ar
ke

r
po

si
ti

on
 (

m
)

error between motion capture segment and ground truth

error between our result and ground truth (known camera)

Fig. 22. Error in 3D world positions for virtual markers when motion
capture data is modified via the pose descriptor.

of human-like characters, or nonhumanoid characters for which
3D animated motion priors were available by keyframing. Though
our method uses a contiguous motion capture sequence, techniques
such as time warping, retargeting, motion blending, and motion re-
sequencing would allow the generation of better motion priors for
a given hand-animation (using, for example, Gleicher [1998], Lee
et al. [2002], Baran et al. [2009], Ikemoto et al. [2009], Zhao and
Safonova [2009]).

An advantage of drawing on motion capture data as a prior is
that it keeps the solution well-behaved. In Section 3.4.3, we had
minimized the linear system in a low-dimensional subspace and
then projected it to full space to obtain the 3D world positions
for the virtual markers. We investigated how the solution would
change when the number of principal components P was increased.
More dimensions allow us to capture finer details, as can be seen
in the elbow and wrist angle in Figure 23. The motion prior keeps
the solution well-behaved even in the full-dimensional space. Also,
our method does not include nonpenetration constraints as part of
the error terms in the minimization. As a result, it is possible for
the limbs of the 3D proxy to intersect. Using well-behaved motion
capture data as a motion prior alleviates this problem, though it
does not guarantee nonpenetration. Simulating tight-fitting clothes,
such as a shirt with sleeves, might be difficult as a result of this
limitation.

In our method, a user specifies the camera moves implicitly, by
selecting a motion capture segment. Thus, if the database contains
only an overground walk cycle, and the hand-animation contains
the character walking in place (on a treadmill), our method will
assume that the character walks overground with a tracking camera.
The water balloon result in Figure 14 is an example that stress-
tests the assumption that the best-matching motion capture segment
will be sufficient to estimate the camera imagined by the artist.
In the animated movie (included as supplementary material), we
see that the estimated camera tracks the character as he walks,
but moves very slightly instead of remaining completely stationary
when the character ducks. This movement happens because it is not
reasonable to find, or capture, a motion capture segment where the
actor has ducked with the arms and legs bending exactly in the same
order as in the hand-animation; for example, the actor might brace
her arms over her head before she bends at the knees. As a result, our
camera estimation routine incorrectly infers that the camera should
move to account for this mismatch. Future work could incorporate
information about camera moves from the shot exposure sheet or
add annotation about the world coordinate frame in the process of
animating. A possible annotation could be a cube drawn on the
ground plane in every frame, thus providing a world reference.

Fig. 23. Projection to a low-dimensional subspace: We varied the number
of principal components P used to represent the 3D pose. Left: hand-drawn
frames. Center: P = 20. Right: P = 72 (all dimensions). More dimensions
allow for finer details, as seen in the elbow and wrist.

As part of preprocessing, in Section 3.2, we proposed a pose
descriptor to modify motion capture data. The pose descriptor can
be thought of as a shape descriptor that retargets the pose of the
hand-drawn figure onto a skeleton proportioned to match the mo-
tion capture data. This step allows us to transfer the pose from a
hand-drawn ballerina, who may be statuesque, onto a “normal” fe-
male actor, or the pose of a goofy character with long arms onto a
“normal” male actor, and then use human motion capture data as
a motion prior. This pose descriptor preserves in-plane joint angles
in its current formulation. A useful future work direction would be
to extend it to preserve contacts or other metrics that might better
capture the essence of the hand-drawn animation.

Though all our results have used hand-animations as input, we
could apply the same concepts to 3D proxies for video sequences;
for example, to add a scarf on a person walking outdoors on a windy
day. We could draw on the literature in the computer vision and
graphics communities on transferring lighting, shadows, and other
visual cues to match the added 3D elements to the video elements.
An interesting research question would be whether the addition of
3D elements can be made seamless to viewers. Even though we can
match the rendering style of the added 3D elements (by toon-shading
to match hand-animations, for example), the movement of the 3D
elements would need to match the original video or animation as
well. For example, physical parameters of the cloth simulation, like

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

Three-Dimensional Proxies for Hand-Drawn Characters • 8:15

gravity and friction, might need to be modified so that the pom-pom
and skirt simulations are a better match to the bounciness of the
hand-drawn jumping jacks without tangling or crumpling.

We have proposed three different levels of detail in a 3D proxy
depends on its function. We could extend this line of thought to
more levels of detail, for example, a mesh model that conforms
to the artist’s lines, thus allowing 3D texture-mapping and lighting
techniques to be used for hand-drawn characters. Li and colleagues
describe a method to deform a mesh model once the driving skeleton
has been modified to match the hand-drawn animation [Li et al.
2003]. We could use the method of Section 3.4.1 to match the
driving skeleton to markers on the hand-drawn animation, thus
automating one of the user inputs in their method.

APPENDIX

The 3D position of marker j in frame i is expressed in homogeneous
coordinates, Xw

ij = [Xw
ij , Y

w
ij , Zw

ij , 1]T . Its projection on the image
plane via the projection operator Mi is defined up to scale,

xproj

ij
∼= MiXw

ij .

The input-match term eij
a is defined

eij
a = ∣∣∣∣x̃ij − xproj

ij

∣∣∣∣. (27)

This error term can be linearized though a cross product [Hartley
and Zisserman 2003]. Eq. (27) is equivalent to

x̃ij × MiXw
ij = 0. (28)

On rearranging the cross product as a matrix operation Eq. (28) is
written as

CMi

⎡
⎢⎣

Xw
ij

Y w
ij

Zw
ij

1

⎤
⎥⎦ = 0, (29)

where C = [0 −1 ỹij

1 0 −x̃ij

−ỹij x̃ij 0

]
, and M = [mT

1

mT
2

mT
3

]
, are known matrices.

Intuitively, Eq. (29) constrains Xw
ij to lie on a back-projected ray

starting at the camera center, going through the image plane point
x̃ij .

We stack Eqs. (29), (4), and (6) for each frame, and denote the
combined linear system Aij ,

Aij Xw
ij = bij . (30)

The smoothness term in Eq. (5) is incorporated into a large sparse
matrix as follows:

W

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣

A11 0
0 A21
.
. AKN

⎤
⎥⎦

⎡
⎢⎣

I −I 0 . . .
.. I −I . . .
0
0 . . . I −I

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

Xw
11

Xw
21

. . .
Xw

KN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b11

b21

. . .
bKN

0
. . .
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

WAf ullXw
f ull = bf ull , (32)

where W is the weight matrix that describes the relative weights
between the geometric constraints and the smoothing terms. We
solve for the least squares solution to Eq. (32).

ACKNOWLEDGMENTS

We thank Glen Keane, Tom LaBaff, and Travis Blaise for providing
the input animations, and Justin Macey for help with motion capture.
Thanks also to Autodesk for their donation of the 3D animation and
rendering package Maya.

REFERENCES

AGARWAL, A. AND TRIGGS, B. 2006. Recovering 3d human pose from
monocular images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1, 44–58.

BARAN, I., VLASIC, D., GRINSPUN, E., AND POPOVIĆ, J. 2009. Semantic
deformation transfer. ACM Trans. Graph. 28, 3, 1–6.

BOURDEV, L. AND MALIK, J. 2009. Poselets: Body part detectors trained using
3d human pose annotations. In Proceedings of the IEEE International
Conference on Computer Vision.

BREGLER, C. AND MALIK, J. 1998. Tracking people with twists and exponen-
tial maps. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

COOPER, D. 2002. 2D/3D Hybrid character animation on Spirit. In Proceed-
ings of the ACM SIGGRAPH ’02 Conference Abstracts and Applications
Conference.

CORRÊA, W. T., JENSEN, R. J., THAYER, C. E., AND FINKELSTEIN, A. 1998. Tex-
ture mapping for cel animation. In Proceedings of the ACM SIGGRAPH
’98. 435–446.

CULHANE, S. 1990. Animation From Script to Screen. St. Martin’s Press,
New York.

DANIELS, E. 1999. Deep canvas in Disney’s Tarzan. In Proceedings of the
ACM SIGGRAPH ’99 Conference Abstracts and Applications.

DAVIS, J., AGRAWALA, M., CHUANG, E., POPOVIC, Z., AND SALESIN, D. H. 2003.
A sketching interface for articulated figure animation. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
320–328.

DEMIRDJIAN, D., KO, T., AND DARREL, T. 2003. Constraining human body
tracking. In Proceedings of the IEEE International Conference on Com-
puter Vision.

ELGAMMAL, A. AND LEE, C. 2004. Inferring 3d body pose from silhouettes
using activity manifold learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

ELLIS, D. 2003. Dynamic time warp (DTW) in Matlab.
www.ee.columbia.edu/ dpwe/resources/matlab/dtw/.

FORSYTH, D. A., ARIKAN, O., IKEMOTO, L., O’BRIEN, J., AND RAMANAN,
D. 2005. Computational studies of human motion: part 1, tracking
and motion synthesis. Found. Trends Comput. Graph. Vis. 1, 2-3,
77–254.

GLEICHER, M. 1998. Retargetting motion to new characters. In Proceedings
of the ACM SIGGRAPH ’98. 33–42.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND POPOVIC, Z. 2004. Im-
plicit surface joint limits to constrain video-based motion capture. ACM
Trans. Graph. 23, 3, 522–531.

HARTLEY, R. AND ZISSERMAN, A. 2003. Multiple View Geometry, 2 ed.
Cambridge University Press.

HERDA, L., URTASUN, R., AND FUA, P. 2004. Implicit surface joint limits to
constrain video-based motion capture. In Proceedings of the European
Conference on Computer Vision. 405–418.

HORNUNG, A., DEKKERS, E., AND KOBBELT, L. 2007. Character animation
from 2d pictures and 3d motion data. ACM Trans. Graph. 26, 1, 1–9.

IKEMOTO, L., ARIKAN, O., AND FORSYTH, D. 2009. Generalizing motion edits
with gaussian processes. ACM Trans. Graph. 28, 1, 1–12.

JAIN, E., SHEIKH, Y., AND HODGINS, J. K. 2009. Leveraging the talent of hand
animators to create three-dimensional animation. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

8:16 • E. Jain et al.

JAIN, E., SHEIKH, Y., MAHLER, M., AND HODGINS, J. 2010. Augmenting hand
animation with three-dimensional secondary motion. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

JOHNSTON, O. AND THOMAS, F. 1995. The Illusion of Life: Disney Animation.
Disney Editions.

JOHNSTON, S. F. 2002. Lumo: Illumination for cel animation. In Proceed-
ings of the (NPAR’02) Symposium on Non-Photorealistic Animation and
Rendering. 45–52.

LASSETER, J. 1994. Tricks to animating characters with a computer. In ACM
SIGGRAPH Course Notes.

LEE, H. J. AND CHEN, Z. 1985. Determination of 3d human body pos-
tures from a single view. Comput. Vis. Graph. Image Process. 30,
148–168.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND POLLARD, N. S.
2002. Interactive control of avatars animated with human motion data.
ACM Trans. Graph. 21, 3, 491–500.

LI, Y., GLEICHER, M., XU, Y.-Q., AND SHUM, H.-Y. 2003. Stylizing motion
with drawings. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 309–319.

MOESLUND, T. B. AND GRANUM, E. 2006. A survey of computer vision-
based human motion capture. Comput. Vis. Image Understand. 81, 3,
231–268.

PETROVIĆ, L., FUJITO, B., WILLIAMS, L., AND FINKELSTEIN, A. 2000. Shad-
ows for cel animation. In Proceedings of the ACM SIGGRAPH’00.
511–516.

RADEMACHER, P. 1999. View-dependent geometry. In Proceedings of the
ACM SIGGRAPH’99 Conference. 439–446.

RAMANAN, D., FORSYTH, D., AND ZISSERMAN, A. 2004. Tracking people by
learning their appearance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1,
65–81.

RIVERS, A., IGARASHI, T., AND DURAND, F. 2010. 2.5d cartoon models. ACM
Trans. Graph. 29, 4.

ROBERTSON, B. 1998. Mixed media. Comput. Graph. World, 32–35.
ROSENHAHN, B., BROX, T., CREMERS, D., AND SEIDEL, H.-P. 2007a. Online

smoothing for markerless motion capture. In Proceedings of the DAGM
Symposium on Pattern Recognition 4713, 163–172.

ROSENHAHN, B., BROX, T., CREMERS, D., AND SEIDEL, H.-P. 2008. Staying
well grounded in markerless motion capture. In Proceedings of the DAGM
Symposium on Pattern Recognition 5096, 385–395.

ROSENHAHN, B., BROX, T., AND SEIDEL, H.-P. 2007b. Scaled motion dynamics
for markerless motion capture. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S. 2004. Synthesizing
physically realistic human motion in low-dimensional, behavior-specific
spaces. ACM Trans. Graph. 23, 3.

SAKOE, H. AND CHIBA, S. 1990. Dynamic programming algorithm optimiza-
tion for spoken word recognition. Read. Speech Recogn. 159–165.

SIDENBLADH, H., BLACK, M., AND SIGAL, L. 2002. Implicit probabilistic
models of human motion for synthesis and tracking. In Proceedings of
the European Conference on Computer Vision.

SIDENBLADH, H., BLACK, M. J., AND FLEET, D. J. 2000. Stochastic tracking of
3d human figures using 2d image motion. In Proceedings of the European
Conference on Computer Vision, 702–718.

SMINCHISESCU, C., KANAUJIA, A., AND METAXAS, D. 2005. Discriminative
density propagation for 3d human motion estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition.

SMINCHISESCU, C. AND TRIGGS, B. 2003. Estimating articulated human
motion with covariance scaled sampling. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

STAM, J. 2009. Nucleus: Towards a unified dynamics solver for com-
puter graphics. In Proceedings of the IEEE International Conference
on Computer-Aided Design and Computer Graphics, 1–11.

SÝKORA, D., SEDLÁČEK, D., JINCHAO, S., DINGLIANA, J., AND COLLINS, S.
2010. Adding depth to cartoons using sparse depth (in)equalities. Comput.
Graph. Forum 29, 2, 615–623.

TAYLOR, C. J. 2000. Reconstruction of articulated objects from point corre-
spondences in a single uncalibrated image. Comput. Vis. Image Under-
stand. 80, 349–363.

URTASUN, R., FLEET, D. J., AND FUA, P. 2006. Temporal motion models for
monocular and multiview 3d human body tracking. Comput. Vis. Image
Understand. 104, 2, 157–177.

WEI, X. AND CHAI, J. 2010. Videomocap: Modeling physically realistic hu-
man motion from monocular video sequences. ACM Trans. Graph. 29, 4,
1–10.

WOOD, D. N., FINKELSTEIN, A., HUGHES, J. F., THAYER, C. E., AND SALESIN,
D. H. 1997. Multiperspective panoramas for cel animation. In Proceedings
of the ACM SIGGRAPH’97 Conference, 243–250.

WU, Y., HUA, G., AND YU, T. 2003. Tracking articulated body by dynamic
markov network. In Proceedings of the IEEE International Conference
on Computer Vision.

ZHAO, L. AND SAFONOVA, A. 2009. Achieving good connectivity in motion
graphs. Graph. Models 71, 4, 139–152.

Received May 2011; revised August 2011; accepted September 2011

ACM Transactions on Graphics, Vol. 31, No. 1, Article 8, Publication date: January 2012.

